Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two new Phenacogrammus are described from the Ndzaa River, a small left-bank tributary of the Mfimi-Lukenie River in the central Congo basin. They share with P. deheyni, a congener endemic to the Cuvette Centrale to the north, a prominent anterior expansion of the first pleural rib; a feature interpreted here as a synapomorphy diagnostic for this species assemblage. The two new species are readily differentiated from P. deheyni based on differences in pigmentation patterning, a lower number of scales in longitudinal series (26–28 vs. 29–33) and a longer head length (m. 24.9% SL vs. 21.7 and 23.2% SL). Phenacogrammus flexus, new species, is distinguished from all congeners in the possession of 6 (vs. 7) supraneural bones, and a characteristic zigzag pattern of black pigmentation along and below the midline extending from the posterior border of the opercle to the base of the caudal peduncle. While no unambiguous morphological autapomorphies have been located to diagnose P. concolor, new species, it is nonetheless readily distinguished from all congeners, except P. deheyni and P. flexus, in the possession of a prominent anterior expansion of the first pleural rib. It differs from both P. deheyni and P. flexus in the absence of a dominant pigmentation patterning over the flanks and caudal peduncle. Additionally, it differs from P. flexus in a shallower body depth (m. 24.9% vs. 27.0% SL) and in the possession of 7 (vs. 6) supraneurals.more » « less
-
Maria, E. Abate: (Ed.)More than 40 years ago in their compendium of fish diversity in the lower Congo River (LCR), T. R. Roberts and D. J. Stewart posed the question, “Why does the LCR harbor so many cichlids?” Here we seek an answer through a synthesis of the last 40+ years of research on cichlid diversity, ecology, and speciation. Our review suggests a key role for the unique geomorphology and hydrology of the river itself and its history of connectivity to other African freshwater ecosystems. In contrast to the river upstream of Pool Malebo, the LCR channel is entirely bedrock, and littoral habitats are mostly rocky and rock-strewn. In situ measurements have recorded dramatic changes in channel topology, fluctuating bed bathymetry, and regions of extreme depth. A combination of high annual discharge, steep elevational decline, and fluctuating channel width and depth result in extraordinarily high energy flow regimes throughout the LCR. In-stream hydraulics and bathymetry appear to play a key role in isolating cichlid populations and are likely powerful drivers for micro-allopatric isolation and speciation, often over remarkably small geographical scales. Moreover, this hydrologically extreme environment is the evolutionary backdrop for an unusual array of cichlid morphologies, including the only known blind cichlid (Lamprologus lethops).more » « less
-
Trait loss represents an intriguing evolutionary problem, particularly when it occurs across independent lineages. Fishes in light-poor environments often evolve “troglomorphic” traits, including reduction or loss of both pigment and eyes. Here, we investigate the genomic basis of trait loss in a blind and depigmented African cichlid, Lamprologus lethops, and explore evolutionary forces (selection and drift) that may have contributed to these losses. This species, the only known blind cichlid, is endemic to the lower Congo River. Available evidence suggests that it inhabits deep, low-light habitats. Using genome sequencing, we show that genes related to eye formation and pigmentation, as well as other traits associated with troglomorphism, accumulated inactivating mutations rapidly after speciation. A number of the genes affected in L. lethops are also implicated in troglomorphic phenotypes in Mexican cavefish(Astyanax mexicanus) and other species. Analysis of heterozygosity patterns across the genome indicates that L. lethops underwent significant population bottleneck roughly 1Ma, after which effective population sizes remained low. Branch-length tests on a subset of genes with inactivating mutations show little evidence of directional selection; however, low overall heterozygosity may reduce statistical power to detect such signals. Overall, genome-wide patterns suggest that accelerated genetic drift from a severe bottleneck, perhaps aided by directional selection for the loss of physiologically expensive traits, caused inactivating mutations to fix rapidly in this species.more » « less
-
In its lower reaches the Congo River is the world’s fastest and deepest river, and this short stretch hosts great biological diversity. Many fishes inhabiting the lower Congo River display adaptations to life in such an extreme environment, and often similar adaptations have arisen in fishes distant from each other on the tree of life. Professor Melanie Stiassny, along withher partners at the American Museum of Natural History, CUNY Graduate Center and York College, the University of Kinshasa, and the University of Marien Ngouabi, have been studying the fish of this region for over ten years, and their work has produced many interesting findings.more » « less
-
A new procatopodid, assigned to the genus Poropanchax, is described from a wetland habitat located adjacent to the Inga Falls in Lower Congo. Poropanchax pepo, new species, is distinguished from all congeners by a combination of characters including a higher D/A ratio, rounded anal and dorsal fins, a humeral blotch in males, and the absence of a sharp ventral process on the basipterygium. The finding of a Poropanchax species in Lower Congo was unexpected, since the closest known congeneric population is located in northwestern Gabon, some 700 kilometers to the north. As recognized herein the genus Poropanchax is a clade comprised of five species geographically restricted to humid coastal regions of west and west-central Africa.more » « less
An official website of the United States government

Full Text Available